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Generalized quantum Langevin equations from the forward-backward path integral

Kazuhiro Tsusaka
Department of Physics, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
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Kleinert and Shabanov@H. Kleinert and S. V. Shabanov, Phys. Lett. A200, 224 ~1995!# have derived the
quantum Langevin equations from the Feynman-Vernon forward-backward path integral for a density matrix of
a quantum system in a thermal oscillator bath. However, their derivation is confined to an Ohmic case. In this
paper we derive the generalized quantum Langevin equations from the forward-backward path integral, by
extending the Kleinert-Shabanov method to a general case.@S1063-651X~99!05005-9#

PACS number~s!: 05.40.2a, 05.30.2d
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I. INTRODUCTION

The influence functional path integral method of Feynm
and Vernon@1,2# is very useful to study the behavior of
quantum system coupled with a heat bath. The state of
system is described by the reduced density matrix, deri
by tracing out the environment coordinates in the full dens
matrix. The influence functional method provides an ea
way to obtain a functional representation for the propaga
for the reduced density matrix.

In recent years, some efforts have been made to derive
quasiclassical and quantum Langevin equations for the
tem from the Feynman-Vernon path integral@3–9#. In this
paper, we are interested in deriving the quantum Lange
equations. For the system in a thermal oscillator bath, Kle
ert and Shabanov have derived the quantum Langevin e
tions for an Ohmic environment@9#. In the derivation of the
quantum Langevin equations, they make use of
Schrödinger-like differential equation for a noisy density m
trix. The noisy density matrix is defined by replacing the re
part of the exponent in the influence functional of the
duced density matrix, written as a double time integral, b
single time integral whose integrand is expressed with
quantum noise operator. The Schro¨dinger-like differential
equation can be derived by analogy with the procedure
obtain the Schro¨dinger equation from the path integral fo
mulation. The analogous procedure to obtain
Schrödinger-like differential equation can exist only whe
the effective action in the propagator for the noisy dens
matrix is given by a single time integral. In an Ohmic ca
there is the analogous procedure since the imaginary pa
the exponent in the influence functional also become
single time integral. However, in a non-Ohmic case, ther
no analogous procedure due to a double time integral in
imaginary part of the exponent in the influence function
Therefore, the Kleinert-Shabanov method has difficulty
deriving the generalized quantum Langevin equations fo
general environment. The purpose of this paper is to ov
come the difficulty and derive the generalized quant
Langevin equations for the general case.

In Sec. II we explain the Feynman-Vernon forwar
backward path integral for the reduced density matrix o
system in a general environment. Then in Sec. III we int
duce the noisy density matrix for the general environm
according to the Kleinert-Shabanov method for the Ohm
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case. In Sec. IV we summarize the derivation of the quan
Langevin equations for an Ohmic environment. In Sec. V
show how to derive the generalized quantum Langevin eq
tions for a general environment. Section VI contains so
discussions.

II. FEYNMAN-VERNON FORWARD-BACKWARD
PATH INTEGRAL FOR THE REDUCED

DENSITY MATRIX

We consider a quantum system with massm moving in a
potentialV(x) and bilinearly coupled to a thermal oscillato
bath consisting of a set of harmonic oscillators with massmn
and natural frequencyvn . The Hamiltonian of the system
plus environment is given by

Ĥ5
p̂2

2m
1V~ x̂!1 (

n51

N F p̂n
2

2mn
1

1

2
mnvn

2S q̂n2
cn

mnvn
2
x̂D 2G ,

~1!

where x̂ and p̂ are the coordinate and momentum operat
of the system,q̂n and p̂n are those of the oscillators, andcn
are coupling constants. Here we have the canonical com
tation relations

@ x̂,p̂#5 i\, @ q̂n ,p̂m#5 i\dnm , ~2!

and all other commutators vanish.
Let r̂(t) be the density matrix for the system plus env

ronment. It evolves according to

r̂
˙
~ t !52

i

\
@Ĥ,r̂~ t !# ~3!

and reads

r̂~ t !5 expS 2
iĤ t

\
D r̂~0!S iĤ t

\
D . ~4!

The state of the system is described by the reduced den
matrix, defined as
4931 ©1999 The American Physical Society
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4932 PRE 59KAZUHIRO TSUSAKA
rS~x,x8,t !5^xur̂S~ t !ux8&

5E
2`

1`

dqE
2`

1`

dq8^xqur̂~ t !ux8q8&d~q2q8!.

~5!

Here we have usedq to denote the full set of oscillator co
ordinatesqn . If we assume that at some initial timet50 the
system and the bath are decoupled and the bath is in the
equilibrium at temperatureT5(kBb)21, then we can write
Eq. ~5! as @1,2,7,8#

rS~x,x8,t !

5E
2`

1`

dxiE
2`

1`

dxi8U~x,x8,t;xi ,xi8 ,0!rS~xi ,xi8 ,0!, ~6!

where

U~x,x8,t;xi ,xi8 ,0!

5E
xi

x

Dx1E
xi8

x8
Dx2F@x1 ,x2#

3expF i

\
~AS@x1#1AC@x1#2AS@x2#2AC@x2# !G

[E
xi

x

Dx1E
xi8

x8
Dx2 expS i

\
A@x1 ,x2# D . ~7!

Here the subscripti denotes initial variables, the functiona
A@x1 ,x2# is the effective action for the system, and t
functionalsAS@x6#, AC@x6# are the classical actions ass
ciated with the system Hamiltonian and the te
x̂2(n51

N cn
2/2mnvn

2 in Eq. ~1!, respectively,

AS@x6#5E
0

t

dsFm

2
ẋ6~s!22V„x6~s!…G ,

~8!

AC@x6#52E
0

t

ds f~0!x6~s!2,

where

f ~s!5E
0

1`

dv
I ~v!

v
cos~vs!, ~9!

whereI (v) is the spectral density of the environment:

I ~v!5 (
n51

N

d~v2vn!
cn

2

2mnvn
. ~10!

Here it is supposed that the frequencies of the oscillators
distributed along the positive real axis. The influence fu
tional F@x1 ,x2# can be written as

F@x1 ,x2#5FI@X,Y#FR@Y#, ~11!
al

re
-

FI@X,Y#5 expF2
2i

\ E
0

t

dsE
0

s

duY~s!a I~s2u!X~u!G ,
~12!

FR@Y#5expF2
1

\E0

t

dsE
0

s

duY~s!aR~s2u!Y~u!G ,
~13!

where we have introduced new variables

X~s!5@x1~s!1x2~s!#/2, Y~s!5x1~s!2x2~s!.
~14!

The kernelsaR(s) anda I(s) are defined as

aR~s!5E
0

1`

dvI ~v!cothS 1

2
b\v D cos~vs! ~15!

and

a I~s!5
d

ds
f ~s!. ~16!

Since the pathsx1(s), x2(s) correspond to a forward an
backward movement of the system in time, the express
~7! is also called forward-backward path integral.

III. NOISY DENSITY MATRIX

Let us consider the quantum noise operator

ĥ~s!5 (
n51

N

cnF q̂n cos~vns!1
p̂n

mn

sin~vns!

vn
G . ~17!

This satisfies the commutation relation

@ĥ~s!,ĥ~s8!#52i\a I~s2s8!. ~18!

We shall demonstrate that the double time integral in E
~13! can be replaced by a single time integral with the h
of this noise operator. To this end, we first introduce t
adjoining operatorĥc(s) associated withĥ(s). This is de-
fined as

ĥc~s!Ô5
1

2
@ĥ~s!,Ô#1 , ~19!

whereÔ is an arbitrary operator. For convenience we ha
adopted the notation for the adjoining operator used in R
@10# and @11#. Although the noise operatorĥ(s) has a non-
trivial commutator~18! with itself at a different time, two
adjoining operatorsĥc(s) and ĥc(s8) commute with each
other, so that they can be treated asc numbers:

@ĥc~s!,ĥc~s8!#Ô5
1

4
@ĥ~s!,ĥ~s8!#Ô

1
1

4
Ô@ĥ~s8!,ĥ~s!#50. ~20!

We next consider the correlation function ofĥc(s),
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^ĥc~s!ĥc~s8!&[ TrB@ĥc~s!ĥc~s8!r̂B#, ~21!

where TrB denotes the trace over bath degrees of freed
andr̂B is the initial equilibrium density operator for the bat

r̂B5 exp~2bĤB!/TrB@exp~2bĤB!#, ~22!

whereĤB is the bath Hamiltonian:

ĤB5 (
n51

N F p̂n
2

2mn
1

1

2
mnvn

2q̂n
2G . ~23!

This is calculated as

^ĥc~s!ĥc~s8!&5
1

2
^@ĥ~s!,ĥ~s8!#1&5\aR~s2s8!.

~24!

Note that the result agrees with the kernel of Eq.~13! within
the factor\. Since the adjoining operatorĥc(s) is a Gauss-
ian noise variable, we may rewrite Eq.~13! as @8,9#

FR@Y#5K expF i

\E0

t

dsY~s!ĥc~s!G L . ~25!

Then we can replace the double time integral in Eq.~13! by
the single time integral in Eq.~25!, by introducing the noisy
density matrix of the system

rĥc

S
~x,x8,t !5^xur̂ ĥc

S
~ t !ux8&5E

2`

1`

dxiE
2`

1`

dxi8

3U ĥc
~x,x8,t;xi ,xi8 ,0!rS~xi ,xi8 ,0!,

~26!

where

U ĥc
~x,x8,t;xi ,xi8 ,0!

5E
xi

x

Dx1E
xi8

x8
Dx2F ĥc

@x1 ,x2#expF i

\
~AS@x1#

1AC@x1#2AS@x2#2AC@x2# !G , ~27!

F ĥc
@x1 ,x2#5FI@X,Y#F ĥc

R
@Y#, ~28!

F ĥc

R
@Y#5 expF i

\E0

t

dsY~s!ĥc~s!G . ~29!

Then the reduced density matrix is given by the bath aver
of the noisy density matrix:

^r̂ ĥc

S
~ t !&5 r̂S~ t !. ~30!

Using the variablesX(s), Y(s) defined by Eq.~14!, the
noise-dependent effective actionAĥc

@X,Y# in the propagator
~27! is written as
m

ge

Aĥc
@X,Y#5E

0

t

ds$mẎ~s!Ẋ~s!2V@X~s!1Y~s!/2#1V@X~s!

2Y~s!/2#22 f ~0!Y~s!X~s!%

22E
0

t

dsE
0

s

duY~s!a I~s2u!X~u!

1E
0

t

dsY~s!ĥc~s!. ~31!

IV. DERIVATION OF THE QUANTUM LANGEVIN
EQUATIONS

Now we consider the Ohmic case

I ~v!5
g

p
v. ~32!

Substituting Eq.~32! into Eq. ~12! and integrating by parts
with respect tou, we obtain

FI@X,Y#5 expF2
ig

\ E
0

t

dsY~s!Ẋ~s!

2
2ig

\ E
0

t

dsY~s!d~s!X~s!

1
2ig

\ E
0

t

dsY~s!d~0!X~s!G . ~33!

The term*0
t ds@22 f (0)Y(s)X(s)# in Eq. ~31! is canceled by

the last term of the exponent in Eq.~33!. Then Eq.~31!
becomes

Aĥc
@X,Y#5E

0

t

dsLĥc
„X~s!,Y~s!,Ẋ~s!,Ẏ~s!…, ~34!

where

L ĥc
„X~s!,Y~s!,Ẋ~s!,Ẏ~s!…5mẎ~s!Ẋ~s!2V@X~s!

1Y~s!/2#1V@X~s!2Y~s!/2#

2gY~s!Ẋ~s!1Y~s!ĥc~s!

22gY~s!d~s!X~s!. ~35!

The action~34! can be rewritten in the canonical form:

Aĥc
@PX ,PY ,X,Y#5E

0

t

ds@PX~s!Ẋ~s!1PY~s!Ẏ~s!

2H ĥc
„PX~s!,PY~s!,X~s!,Y~s!…#,

~36!

where
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H ĥc
„PX~s!,PY~s!,X~s!,Y~s!…

5
1

m
@PX~s!1gY~s!#PY~s!1V@X~s!1Y~s!/2#

2V@X~s!2Y~s!/2#2Y~s!ĥc~s!12gY~s!d~s!X~s!.

~37!

HerePX(s), PY(s) are the generalized momenta:

PX~s!5
]

]Ẋ~s!
L ĥc

„X~s!,Y~s!,Ẋ~s!,Ẏ~s!…,

~38!

PY~s!5
]

]Ẏ~s!
L ĥc

„X~s!,Y~s!,Ẋ~s!,Ẏ~s!….

Since the action~36! is the single time integral, we obtain th
Schrödinger-like differential equation for the noisy densi
matrix ~26!,

i\
]

]t
rĥc

S
~X,Y,t !5Ĥ ĥc

rĥc

S
~X,Y,t !, ~39!

with Ĥ ĥc
being the operator arising from Eq.~37! by substi-

tuting 2 i\]/]X and 2 i\]/]Y into PX(t) and PY(t), re-
spectively. HereX5X(t)5(x1x8)/2 andY5Y(t)5x2x8.
In the transition from the termgY(t)PY(t)/m in Eq. ~37! to
the operator, we choose the operator ordering to begY
(2 i\]/]Y)/m, notg(2 i\]/]Y)Y/m @9#. Then Eq.~39! can
be rewritten as

i\
]

]t
r̂ ĥc

S
~ t !5@ĤS,r̂ ĥc

S
~ t !#1

1

2
@ x̂,@g p̂/m2ĥ~ t !

12gd~ t !x̂,r̂ ĥc

S
~ t !#1#, ~40!

whereĤS is the system Hamiltonian:

ĤS5
p̂2

2m
1V~ x̂!. ~41!

Let us define the noisy Heisenberg system opera
Ôĥc

S (t) for the Schro¨dinger system operatorÔS by

TrS@ÔSr̂ ĥc

S
~ t !#5 TrS@Ôĥc

S
~ t !r̂S~0!#, ~42!

where TrS implies a trace over system degrees of freedo
Sincer̂ ĥc

S (0)5 r̂S(0), thenoisy Heisenberg system operat

Ôĥc

S (t) coincides with the Schro¨dinger system operatorÔS at

t50. Differentiating both sides of Eq.~42! with respect tot
and using Eqs.~40! and ~42!, we get

x̂
˙

ĥc
~ t !5 p̂ĥc

~ t !/m,

~43!

p̂
˙

ĥc
~ t !52V̂ĥc

8 ~ t !2g x̂
˙

ĥc
~ t !1ĥ~ t !22gd~ t !x̂,
r

.

where V̂ĥc
8 (t) is the noisy Heisenberg system operator

V8( x̂), and the prime denotes the derivative with respec
x̂. If we recognize thatV̂ĥc

8 (t)5V8„x̂ĥc
(t)… @9#, we obtain the

same forms as the quantum Langevin equations derived f
the Heisenberg equations of motion@12–16#. Then we can
write

x̂ĥc
~ t !5eiĤ t/\x̂e2 iĤ t/\,

~44!
p̂ĥc

~ t !5eiĤ t/\p̂e2 iĤ t/\.

V. DERIVATION OF THE GENERALIZED QUANTUM
LANGEVIN EQUATIONS

Now we turn to the general case with the general spec
density defined in Eq.~10!. Then the noise-dependent effe
tive action Aĥc

@X,Y# for the system is given by Eq.~31!.
Except for the Ohmic case, there is no analogous proced
to obtain the Schro¨dinger-like differential equation for the
noisy density matrix~26!, due to the double time integral in
Eq. ~31!. Therefore, we meet the difficulty in deriving th
generalized quantum Langevin equation for the general
vironment. To overcome this difficulty, we introduce tw
functionsW(s), Z(s) and a functionalP@W,Z# and suppose
the following path integral Fourier transform:

expF2
2i

\ E dsEs

duY~s!a I~s2u!X~u!G
5E DWE DZP@W,Z#expS i

\E ds@X~s!W~s!

1Y~s!Z~s!# D
[ K expS i

\E ds@X~s!W~s!1Y~s!Z~s!# D L
W,Z

.

~45!

That is to say, we suppose that the left-hand side of Eq.~45!
is given by the average over allW(s), Z(s) with weight
P@W,Z#DWDZ of

expS i

\E ds@X~s!W~s!1Y~s!Z~s!# D . ~46!

From Eq.~45! it is clear that

^1&W,Z5E DWE DZP@W,Z#51. ~47!

By using Eq.~45! and settingX(s)5Y(s)50 for s.t and
s,0, we obtain

FI@X,Y#5K expS i

\E0

t

ds@X~s!W~s!1Y~s!Z~s!# D L
W,Z

.

~48!

Let us define the new functionalFW,Z
I @X,Y# by



ity

y

:

e
n-

s in

ht

PRE 59 4935GENERALIZED QUANTUM LANGEVIN EQUATIONS FROM . . .
FW,Z
I @X,Y#5 expS i

\E0

t

ds@X~s!W~s!1Y~s!Z~s!# D .

~49!

Using this functional, we introduce the new noisy dens
matrix of the system

rĥc ;W,Z
S

~x,x8,t !5^xur̂ ĥc ;W,Z
S

~ t !ux8&

5E
2`

1`

dxiE
2`

1`

dxi8U ĥc ;W,Z~x,x8,t;xi ,xi8,0!

3rS~xi ,xi8 ,0!, ~50!

where

U ĥc;W,Z
~x,x8,t;xi ,xi8 ,0!

5E
xi

x

Dx1E
xi8

x8
Dx2F ĥc ;W,Z@x1 ,x2#expF i

\
~AS@x1#

1AC@x1#2AS@x2#2AC@x2# !G , ~51!

F ĥc ;W,Z@x1 ,x2#5FW,Z
I @X,Y#F ĥc

R
@Y#. ~52!

Then rĥc

S (x,x8,t) is given by the average of the new nois

density matrix ~50! over all W(s), Z(s) with weight
P@W,Z#DWDZ:

^rĥc ;W,Z
S

~x,x8,t !&W,Z5rĥc

S
~x,x8,t !. ~53!

Using the variablesX(s), Y(s) defined by Eq.~14!, the new
noise-dependent effective actionAĥc ;W,Z@X,Y# in the propa-
gator ~51! is written as

Aĥc ;W,Z@X,Y#5E
0

t

dsLĥc ;W,Z„X~s!,Y~s!,Ẋ~s!,Ẏ~s!…,

~54!

where

L ĥc ;W,Z„X~s!,Y~s!,Ẋ~s!,Ẏ~s!…

5mẎ~s!Ẋ~s!2V@X~s!

1Y~s!/2#1V@X~s!2Y~s!/2#

22 f ~0!Y~s!X~s!

1X~s!W~s!1Y~s!Z~s!

1Y~s!ĥc~s!. ~55!

The new action~54! can be rewritten in the canonical form

Aĥc ;W,Z@PX ,PY ,X,Y#

5E
0

t

ds@PX~s!Ẋ~s!1PY~s!Ẏ~s!

2H ĥc ;W,Z„PX~s!,PY~s!,X~s!,Y~s!…#, ~56!
where

H ĥc ;W,Z„PX~s!,PY~s!,X~s!,Y~s!…

5
1

m
PX~s!PY~s!1V@X~s!1Y~s!/2#2V@X~s!

2Y~s!/2#12 f ~0!Y~s!X~s!2X~s!W~s!

2Y~s!Z~s!2Y~s!ĥc~s!. ~57!

Here the generalized momentaPX(s), PY(s) are defined by

PX~s!5
]

]Ẋ~s!
L ĥc ;W,Z„X~s!,Y~s!,Ẋ~s!,Ẏ~s!…,

~58!

PY~s!5
]

]Ẏ~s!
L ĥc ;W,Z„X~s!,Y~s!,Ẋ~s!,Ẏ~s!….

Since the action~56! is the single time integral, we obtain th
Schrödinger-like differential equation for the new noisy de
sity matrix ~50!,

i\
]

]t
rĥc ;W,Z

S
~X,Y,t !5Ĥ ĥc ;W,Zrĥc ;W,Z

S
~X,Y,t !, ~59!

with Ĥ ĥc ;W,Z being the operator arising from Eq.~57! by

substituting2 i\]/]X and2 i\]/]Y into PX(t) and PY(t),
respectively. There exists no operator ordering problem a
Eq. ~39!. Averaging both sides of Eq.~59! over all
W(s), Z(s) with the weightP@W,Z#DWDZ and using Eq.
~53!, we obtain

i\
]

]t
rĥc

S
~X,Y,t !5Ĥ ĥc

8 rĥc

S
~X,Y,t !

2^XW~ t !rĥc ;W,Z
S

~X,Y,t !&W,Z

2^YZ~ t !rĥc ;W,Z
S

~X,Y,t !&W,Z , ~60!

with Ĥ ĥc
8 being the operator arising from

H ĥc
8
„PX~s!,PY~s!,X~s!,Y~s!…

5
1

m
PX~s!PY~s!1V@X~s!1Y~s!/2#2V@X~s!

2Y~s!/2#12 f ~0!Y~s!X~s!2Y~s!ĥc~s!, ~61!

by substituting 2 i\]/]X and 2 i\]/]Y into PX(t) and
PY(t), respectively. Here it should be noted that the weig
P@W,Z#DWDZ is independent oft. The last two terms on
the right-hand side of Eq.~60! can be rewritten as follows:
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^XW~ t !rĥc ;W,Z
S

~X,Y,t !&W,Z

5XE
2`

1`

dXiE
2`

1`

dYiE
Xi

X

DXE
Yi

Y

DY

3 K 2\

i

d

dX~ t !
~FW,Z

I @X,Y# !L
W,Z

F ĥc

R
@Y#

3expS i

\
AS1C@X,Y# D rS~Xi ,Yi ,0!

5XE
2`

1`

dXiE
2`

1`

dYiE
Xi

X

DXE
Yi

Y

DY

3
2\

i

d

dX~ t !
~^FW,Z

I @X,Y#&W,Z!F ĥc

R
@Y#

3expS i

\
AS1C@X,Y# D rS~Xi ,Yi ,0!, ~62!

^YZ~ t !rĥc ;W,Z
S

~X,Y,t !&W,Z

5YE
2`

1`

dXiE
2`

1`

dYiE
Xi

X

DXE
Yi

Y

DY

3 K 2\

i

d

dY~ t !
~FW,Z

I @X,Y# !L
W,Z

3F ĥc

R
@Y#expS i

\
AS1C@X,Y# D rS~Xi ,Yi ,0!

5YE
2`

1`

dXiE
2`

1`

dYiE
Xi

X

DXE
Yi

Y

DY
2\

i

d

dY~ t !

3~^FW,Z
I @X,Y#&W,Z!F ĥc

R
@Y#

3expS i

\
AS1C@X,Y# D rS~Xi ,Yi ,0!, ~63!

where Xi5X(0)5(xi1xi8)/2, Yi5Y(0)5xi2xi8 , and
AS1C@X,Y#5AS@x1#1AC@x1#2AS@x2#2AC@x2#. From
Eqs.~48!, ~49!, and~12!, it can be easily shown that

2\

i

d

dX~ t !
~^FW,Z

I @X,Y#&W,Z!50 ~64!

and

2\

i

d

dY~ t !
~^FW,Z

I @X,Y#&W,Z!522E
0

t

dsa I~ t2s!X~s!

3^FW,Z
I @X,Y#&W,Z . ~65!

Substituting Eqs.~62!–~65! into Eq.~60!, we find the follow-
ing evolution equation for the noisy density matrixr̂ ĥ

S (t):

c

i\
]

]t
r̂ ĥc

S
~ t !5@ĤS,r̂ ĥc

S
~ t !#1

1

2
†x̂,@2 f ~0!x̂2ĥ~ t !,r̂ ĥc

S
~ t !#1‡

1E
0

t

dsa I~ t2s!^@ x̂,Û1~ t,s!

3@ x̂,Û1~s,0!r̂S~0!Û2~0,s!#1Û2~s,t !#&W,Z ,

~66!

where

Û1~s,s8!5T̂ expF2
i

\Es8

s

du$ĤS1 f ~0!x̂2

2 x̂@W~u!/21Z~u!1ĥc~u!#%G ~67!

and

Û2~s8,s!5T̂21 expF i

\Es8

s

du$ĤS1 f ~0!x̂2

2 x̂@2W~u!/21Z~u!1ĥc~u!#%G , ~68!

where T̂ and T̂21 are the time ordering and antiorderin
operators. Equation~66! can also be derived from the rela
tion

r̂ ĥc ;W,Z
S

~ t !5Û1~ t,0!r̂S~0!Û2~0,t !, ~69!

by differentiating both sides of Eq.~69! with respect tot and
averaging them over allW(s), Z(s) with the weight
P@W,Z#DWDZ.

Now we define the noisy Heisenberg system opera
Ôĥc

S (t) for the Schro¨dinger system operatorÔS, as in Sec.

IV, by

TrS@ÔSr̂ ĥc

S
~ t !#5 TrS@Ôĥc

S
~ t !r̂S~0!#, ~70!

where Ôĥc

S (0)5ÔS. By using Eqs.~53! and ~69!, the left-

hand side of Eq.~70! can be rewritten as

TrS@ÔSr̂ ĥc

S
~ t !#5TrS@^Û2~0,t !ÔSÛ1~ t,0!&W,Zr̂S~0!#.

~71!

Here it should be noted that we can interchange the orde
the trace over system degrees of freedom and the ave
with respect toW(s), Z(s). Substituting Eq.~71! into Eq.
~70!, we obtain

Ôĥc

S
~ t !5^Û2~0,t !ÔSÛ1~ t,0!&W,Z . ~72!

Differentiating both sides of Eq.~70! and using Eqs.~66!,
~70!, and~72!, we get

x̂
˙

ĥc
~ t !5 p̂ĥc

~ t !/m, ~73!
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p̂
˙

ĥc
~ t !52V̂ĥc

8 ~ t !22 f ~0!x̂ĥc
~ t !

1
1

2
@ĥ~ t !,^Û2~0,t !Û1~ t,0!&W,Z#1

2E
0

t

dsa I~ t2s!^Û2~0,s!

3@ x̂,Û2~s,t !Û1~ t,s!#1Û1~s,0!&W,Z . ~74!

Of course, these equations can also be obtained directl
differentiating both sides of Eq.~72! with respect tot and
proceeding as we derived Eq.~66! from Eq. ~60!. The last
two terms on the right-hand side of Eq.~74! can be simpli-
fied as follows:

1

2
@ĥ~ t !,^Û2~0,t !Û1~ t,0!&W,Z#15ĥ~ t !, ~75!

E
0

t

dsa I~ t2s!^Û2~0,s!@ x̂,Û2~s,t !Û1~ t,s!#1Û1~s,0!&W,Z

52E
0

t

dsa I~ t2s!x̂ĥc
~s!. ~76!

To prove this, we first calculate the derivative with respec
t of ^Û2(0,t)Û1(t,0)&W,Z . From Eqs.~67! and ~68! it can
be easily shown that

d

dt
^Û2~0,t !Û1~ t,0!&W,Z5 K d

dt
@Û2~0,t !Û1~ t,0!#L

W,Z

5 K Û2~0,t !
i

\
x̂W~ t !Û1~ t,0!L

W,Z

.

~77!

To further evaluate this we consider the matrix element

^xi8u K Û2~0,t !
i

\
x̂W~ t !Û1~ t,0!L

W,Z

uxi&. ~78!

This can be calculated as follows:

^xi8u K Û2~0,t !
i

\
x̂W~ t !Û1~ t,0!L

W,Z

uxi&

5K ^xi8uÛ2~0,t !
i

\
x̂W~ t !Û1~ t,0!uxi&L

W,Z

5K E
2`

`

dxE
xi

x

Dx1E
xi8

x

Dx2

i

\
xW~ t !

3F ĥc ;W,Z@x1 ,x2#expF i

\
~AS@x1#1AC@x1#2AS@x2#

2AC@x2# !G L
W,Z
by

o

5
i

\E2`

`

dxxE
xi

x

Dx1E
xi8

x

Dx2^W~ t !

3FW,Z
I @x1 ,x2#&W,ZF ĥc

R
@x1 ,x2#expF i

\
~AS@x1#

1AC@x1#2AS@x2#2AC@x2# !G , ~79!

where FW,Z
I @x1 ,x2# and F ĥc

R
@x1 ,x2# are FW,Z

I @X,Y# and

F ĥc

R
@Y# in Eq. ~52!. By using Eqs.~48!, ~49!, and~12!, it can

be shown that

^W~ t !FW,Z
I @x1 ,x2#&W,Z5^W~ t !FW,Z

I @X,Y#&W,Z50.
~80!

Substituting this into Eq.~79! we see that

^xi8u K Û2~0,t !
i

\
x̂W~ t !Û1~ t,0!L

W,Z

uxi&50 ~81!

or

K Û2~0,t !
i

\
x̂W~ t !Û1~ t,0!L

W,Z

50. ~82!

Then, substituting Eq.~82! into Eq. ~77!, we obtain

d

dt
^Û2~0,t !Û1~ t,0!&W,Z50. ~83!

Hence we have

^Û2~0,t !Û1~ t,0!&W,Z5^Û2~0,0!Û1~0,0!&W,Z5^1&W,Z51.
~84!

Similarly, we can show that

d

dt
^Û2~0,s!@ x̂,Û2~s,t !Û1~ t,s!#1Û1~s,0!&W,Z50.

~85!

Then we have

^Û2~0,s!@ x̂,Û2~s,t !Û1~ t,s!#1Û1~s,0!&W,Z

5^Û2~0,s!@ x̂,Û2~s,s!Û1~s,s!#1Û1~s,0!&W,Z

5^Û2~0,s!@ x̂,1#1Û1~s,0!&W,Z

52^Û2~0,s!x̂Û1~s,0!&W,Z52x̂ĥc
~s!. ~86!

Then, from Eqs.~84! and ~86!, we arrive at Eqs.~75! and
~76!. Thus, substituting Eqs.~75! and~76! into the right-hand
side of Eq.~74! and integrating the last term by parts wi
respect tos, we get
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x̂
˙

ĥc
~ t !5 p̂ĥc

~ t !/m,

~87!

p̂
˙

ĥc
~ t !52V̂ĥc

8 ~ t !22E
0

t

ds f~ t2s!x̂
˙

ĥc
~s!1ĥ~ t !22 f ~ t !x̂,

where we have used Eq.~16!. Of course, in the Ohmic cas
~32!, wheref (s)5gd(s), these equations reduce to Eq.~43!.
If, again, we recognize thatV̂ĥc

8 (t)5V8„x̂ĥc
(t)… in Eq. ~87!,

we obtain the same forms as the generalized quantum La
vin equations derived from the Heisenberg equations of m
tion @12–16#. Then we can again write

x̂ĥc
~ t !5eiĤ t/\x̂e2 iĤ t/\,

~88!

p̂ĥc
~ t !5eiĤ t/\p̂e2 iĤ t/\.

VI. DISCUSSIONS

We have shown how to derive the generalized quan
Langevin equations from the Feynman-Vernon forwa
backward path integral, by extending the Kleinert-Shaba
method for the Ohmic environment to the general case.
derivation is based on the supposition of the path integ
Fourier transform~45!. The functionalP@W,Z# in Eq. ~45! is
formally given by inverting the path integral Fourier tran
A.

p

pn

s,
e-
-

m
-
v
e

al

form. However, one does not need to do it. As we ha
shown, one can get through the work without the expli
form of P@W,Z#. In this paper we do not pursue it.

To obtain the same forms as the~generalized! quantum
Langevin equations derived from the Heisenberg equati
of motion, we have recognized thatV̂ĥc

8 (t)5V8„x̂ĥc
(t)….

However, this relation is nontrivial except for the potent
with the form V(x)5ax21bx1c with constantsa,b,c. In
Ref. @9#, Kleinert and Shabanov generally define, for a
product of system operatorsÔS5)k51

n Ô(k), a product of
noisy Heisenberg system operators by~with our notation!
Ôĥc

S (t)5)k51
n Ôĥc

(k)(t). We think that the proof of these rela

tions should be given in the future.
Finally we should add the following comments. Equatio

~43! include the added term 2gd(t) x̂ @2 f (t) x̂ in Eq. ~87!#,
while not in the original work of Kleinert and Shabanov@9#.
This is because their starting point is the influence functio
omitting the term corresponding to the second term of
exponent in Eq.~33!. In addition, they consider a continuum
version of the Hamiltonian~1!. Then the quantum noise op
erator is also given by a continuum version of Eq.~17!.
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