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Generalized quantum Langevin equations from the forward-backward path integral
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Kleinert and ShabanojH. Kleinert and S. V. Shabanov, Phys. Lett.2Q0, 224 (1995] have derived the
guantum Langevin equations from the Feynman-Vernon forward-backward path integral for a density matrix of
a quantum system in a thermal oscillator bath. However, their derivation is confined to an Ohmic case. In this
paper we derive the generalized quantum Langevin equations from the forward-backward path integral, by
extending the Kleinert-Shabanov method to a general ¢84€63-651X99)05005-9

PACS numbds): 05.40—a, 05.30-d

I. INTRODUCTION case. In Sec. IV we summarize the derivation of the quantum
Langevin equations for an Ohmic environment. In Sec. V we
The influence functional path integral method of Feynmarshow how to derive the generalized quantum Langevin equa-
and Vernon[1,2] is very useful to study the behavior of a tions for a general environment. Section VI contains some
quantum system coupled with a heat bath. The state of th@iscussions.
system is described by the reduced density matrix, derived

by tracing out the environment coordinates in the full density 1I. FEYNMAN-VERNON FORWARD-BACKWARD
matrix. The influence functional method provides an easy PATH INTEGRAL FOR THE REDUCED
way to obtain a functional representation for the propagator DENSITY MATRIX

for the reduced density matrix.

In recent years, some efforts have been made to derive the We consider a quantum system with massnoving in a
quasiclassical and quantum Langevin equations for the sygotentialV(x) and bilinearly coupled to a thermal oscillator
tem from the Feynman-Vernon path integfa89]. In this  bath consisting of a set of harmonic oscillators with mags
paper, we are interested in deriving the quantum Langeviand natural frequencw,. The Hamiltonian of the system
equations. For the system in a thermal oscillator bath, Kleinplus environment is given by
ert and Shabanov have derived the quantum Langevin equa-

tions for an Ohmic environmef®]. In the derivation of the p? N p2 1 c 2
quantum Langevin equations, they make use of a H=—-—+V(X)+ D, |=— +—mnw§< O — Zi) ,
Schralinger-like differential equation for a noisy density ma- 2m n=1|2m, 2 Mphwp

trix. The noisy density matrix is defined by replacing the real (1)
part of the exponent in the influence functional of the re-

duced density matrix, written as a double time integral, by ayherex andp are the coordinate and momentum operators

single time integral whose integrand is expressed with f the systequn and f)n are those of the oscillators, ag

quantum noise operator. The Schlmge_r-llke differential are coupling constants. Here we have the canonical commu-
equation can be derived by analogy with the procedure tation relations

obtain the Schidinger equation from the path integral for-

mulation. The analogous procedure to obtain the o A

Schralinger-like differential equation can exist only when [x,p]=i%, [Qn,Pm]=1%Snm, 2

the effective action in the propagator for the noisy density

matrix is given by a single time integral. In an Ohmic case,and all other commutators vanish.

there is the analogous procedure since the imaginary part of | ot 5(t) be the density matrix for the system plus envi-

the exponent in the influence functional also becomes @;3ment. It evolves according to

single time integral. However, in a non-Ohmic case, there is

no analogous procedure due to a double time integral in the ) .

imaginary part of the exponent in the influence functional. p(t)=— '_[ﬂ';)(t)] 3)

Therefore, the Kleinert-Shabanov method has difficulty in h

deriving the generalized quantum Langevin equations for a

general environment. The purpose of this paper is to overand reads

come the difficulty and derive the generalized quantum

Langevin equations for the general case. it it
In Sec. Il we explain the Feynman-Vernon forward- f)(t)= exp( );}(o)(_)_ (4)

backward path integral for the reduced density matrix of a h

system in a general environment. Then in Sec. Il we intro-

duce the noisy density matrix for the general environmeniThe state of the system is described by the reduced density

according to the Kleinert-Shabanov method for the Ohmiamnatrix, defined as

h
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pS(X,Xl,t):<X|pS(t)|X,> Fl[X,Y]Z exr{ _ %iJtdestY(S)al(S_U)X(U)},
0 0

+ o0 +o R
=f 3 dqffw da’(xdlp(t)|x'a’)a(a—q"). (12

5 FR[Y]=exr{—% 'ds f squ(s)aR<s—u)Y(U>}
0 0

Here we have used to denote the full set of oscillator co- (13
ordinatesy,, . If we assume that at some initial tinbe- 0 the ) )

system and the bath are decoupled and the bath is in therm4here we have introduced new variables

equilibrium at temperatur@ = (kg8) ", then we can write _ _ B

Eq. (5) as[1,2,7.9 X(s)=[x4(8)+x_(9)]/2, Y(s)=X,(S)—=X_(S).

(14
p3(x,X" 1) The kernelsa®(s) and a'(s) are defined as
te ree ’ ' ’ S, ’ + o 1
=J7w dx Lc AU (xx", %, X ,0)p™(%i,xi",0), (6) aR(s)=f dwl(w)COt?‘(E,Bﬁw>cos{ws) (15)
0
where and
U(x,x’,t;x,X{ ,0) ey — i
a'(s)= dSf(s). (16

X x'
=f Dx+f, Dx_F[x4 ,x_]
Xj Xi

Since the pathg, (s), x_(s) correspond to a forward and
backward movement of the system in time, the expression
(7) is also called forward-backward path integral.

X exr{%(As[M] +A X, ]-ATX-]-Ax-])

X ' i
EJ DX+JX Dx_ exr{—A[xJr X ]
Xi X/ h

N ~ .
Here the subscripit denotes initial variables, the functional n(s)=2> ¢, a, coe{a)ns)+& Sin(@ns) . @
Alx, ,x_] is the effective action for the system, and the n=1 m, oy
functionalsAY x..], A°[x.] are the classical actions asso- __ o . _

ciated with the system Hamiltonian and the term This satisfies the commutation relation

L2gN 2 2 ; A
X2 h-16h/2mpwf in Eq. (1), respectively, [9(8), m(s))]=2iha'(s—'). (18)

Ill. NOISY DENSITY MATRIX

. () Let us consider the quantum noise operator

We shall demonstrate that the double time integral in Eq.
(13) can be replaced by a single time integral with the help
of this noise operator. To this end, we first introduce the
adjoining operatory.(s) associated withy(s). This is de-
fined as

t .
SESE fods[gx+<s>2—v<x+<s»
®)

AL ]= f dsf(0)x-(9)?,
0

- ~ 1 . A
where

ve o) whereO is an arbitrary operator. For convenience we have
f(s):J' dw—-coq ws), (9)  adopted the notation for the adjoining operator used in Refs.
0 @ [10] and[11]. Although the noise operatof(s) has a non-
trivial commutator(18) with itself at a different time, two

wherel (w) is the spectral density of the environment: adjoining operatorsy(s) and 7.(s') commute with each

N 2 other, so that they can be treatedcasumbers:
= —w)—1
|(a))—n§1 8o oz (10)

- ~ P A N
[7c(8), me(s")JO= 7 [n(s),7(s")]O

Here it is supposed that the frequencies of the oscillators are
distributed along the positive real axis. The influence func-

OLn(s), 7(s)]=0. (2
tional F[x, ,x_] can be written as O[7n(s'),n(s)]=0. (20

+
P

FIx, ,x_]=F'[X,Y]FR[Y], (11)  We next consider the correlation function gf(s),
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(7e(8) e(S"))= Tral 7(8) e(s") B, (21)
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A;YC[X,Y]=f;ds{mY(s)X(s)—V[X(s)+Y(s)/2]+V[X(s)

where Tg denotes the trace over bath degrees of freedom

andp® is the initial equilibrium density operator for the bath:

pB= exp(— BHE)/Trglexp( — BHB)], (22
whereH® is the bath Hamiltonian:
N "2
2 2mn 5 Mo 2921. (23)
This is calculated as
. . 1 . .
(nc(8)ne(s'))= 5([7}(8),n(S’)]+>=ﬁaR(S—S’)-
(24)

Note that the result agrees with the kernel of BB) within

the factor. Since the adjoining operatoy.(s) is a Gauss-
ian noise variable, we may rewrite E4.3) as[8,9]

i t ~
FRIY]= < exp{%—fodSY(S) 7¢(S)

> . (25

Then we can replace the double time integral in @) by
the single time integral in Eq25), by introducing the noisy
density matrix of the system

s ~S re tee
p;,C(X,X’,t)Z<X|P;,C(t)|x'>=ﬁ dXiJf dx/
X U5 (%X, t%,%{ ,0)pS(x; X/ ,0),
(26)
where

U5 (X", 6%;,% ,0)

= fXDX+ f’i’Dx_F;?C[x+ ,x_]exp{;—(As[er]

+A X ] ATX-]=AX-D) |, (27)

Fo X X 1=FIIX YIRS [V], (29)
. )

F?’C[Y]= exp{;i—fodsY(s) 7:(s)|. (29)

—Y(s)/2]-2f(0)Y(s)X(8)}

t S
_ l(a_
ZJ'Odsfoqu(s)a(s u)X(u)

t ~
+f dsY(s) n.(s). (31
0
IV. DERIVATION OF THE QUANTUM LANGEVIN
EQUATIONS
Now we consider the Ohmic case
l(w)= Zw (32
o

Substituting Eq(32) into Eqg. (12) and integrating by parts
with respect tou, we obtain

F'[X,Y]= exp{ - I%ftdsY(S)X(S)
0
2' t
- %jodsY(s) S(S)X(s)

2iy [t
+%j0dsY(s)5(0)X(s) )

The termf§ds[ —2f(0)Y(s)X(s)] in Eq.(31) is canceled by
the last term of the exponent in E¢33). Then Eq.(31)
becomes

t . .
A X Y]= jodsL‘nC(X(s),Y(s),X(s),Y(s)), (34

where

L5 (X(3),Y(8),X(s),Y(s))=mY(s)X(s) — V[ X(s)
+Y(s)/2]+V[X(s)—Y(s)/2]
—YY(8)X(8)+Y(8) 7(S)

—29Y(s)8(S)X(S). (35)

The action(34) can be rewritten in the canonical form:

Then the reduced density matrix is given by the bath average

of the noisy density matrix:

(b3 (1)=p1). (30
Using the variablesX(s), Y(s) defined by Eq.(14), the
noise-dependent effective actimc[X,Y] in the propagator
(27) is written as

t . .
AL LPx.Py.X,Y]= deS[Px(S)X(S) +Py(s)Y(s)

—H;, (Px(s),Pv(8).,X(s),Y(s))],
(36)

where
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H;, (Px(s),Py(s),X(5),Y(s))
1
= SIPx(8)+7Y(8)IPy(s) +V[X(s) +Y(s)/2]

—V[X(S)=Y(8)/2]=Y(S) 7c(S) +27Y(S) 8(S)X(S).
(37)

Here Py(s), Pv(s) are the generalized momenta:

7, . .
Px(s)= T(s)L”C(X(S) Y(5),X(s),Y(s)),
(38)

J . .
PY(S) = &Y—(S)LWC(X(S)’Y(S)’X(S)’Y(S))'

Since the actiori36) is the single time integral, we obtain the
Schralinger-like differential equation for the noisy density

matrix (26),

L d 5 A s
Iﬁ—p;}c(X,Y,t)—H”Cp;?C(X,Y,t),

pr (39

with I3|;,c being the operator arising from E(7) by substi-
tuting —i#d/dX and —ifdldY into Py(t) and Py(t), re-
spectively. HereX=X(t) =(x+x')/2 andY=Y(t)=x—x".
In the transition from the termyY(t) Py(t)/m in Eq. (37) to
the operator, we choose the operator ordering toyde

(=ikalaY)Im, noty(—ihalaY)Y/m[9]. Then Eq.(39) can
be rewritten as

d NN 1. . -
ih—ps (D=[H5p> ()]+ S[X.[yp/m=7(1)

+2y5(%p3 (014], (40
whereHS is the system Hamiltonian:
p?
~s_ P° R
H om +V(X). (41

KAZUHIRO TSUSAKA

PRE 59

where\?i} (t) is the noisy Heisenberg system operator for
[

V’(>A<), and the prime denotes the derivative with respect to
X. If we recognize thaf/; (t)=V'(x;, (1)) [9], we obtain the

same forms as the quantum Langevin equations derived from
the Heisenberg equations of motiph2—16. Then we can
write

;(ch(t) _ eiﬁt/ﬁ,;(efiﬁt/h,
(44)

la;,c(t) _ eiﬁt/ﬁbe—iﬁt/ﬁ_

V. DERIVATION OF THE GENERALIZED QUANTUM
LANGEVIN EQUATIONS

Now we turn to the general case with the general spectral
density defined in Eq.10). Then the noise-dependent effec-
tive action A;7C[X,Y] for the system is given by Eq31).
Except for the Ohmic case, there is no analogous procedure
to obtain the Schdinger-like differential equation for the
noisy density matriX26), due to the double time integral in
Eq. (31). Therefore, we meet the difficulty in deriving the
generalized quantum Langevin equation for the general en-
vironment. To overcome this difficulty, we introduce two
functionsW(s), Z(s) and a functionaP[W,Z] and suppose
the following path integral Fourier transform:

exr{—%if dsfsqu(s)a'(s—u)X(u)
i
:J Dwf DZP[W,Z]exp(%J’ ds X(s)W(s)
+Y<S)Z(s)])

E<exp(;i—f ds[X(s)W(s)+Y(s)Z(s)])>

W,z
(45)

That is to say, we suppose that the left-hand side of(&5).
is given by the average over all/(s), Z(s) with weight

Let us define the noisy Heisenberg system operatol’_’[W’Z]DWDZ of

(5?7 (t) for the Schrdinger system operat®® by

Trd 0% (1]= Trd O (1p%(0)], (42)

where Tg implies a trace over system degrees of freedom.

Sinceﬁ?} (0)=pS(0), thenoisy Heisenberg system operator
[+

(5?7 (t) coincides with the Schitinger system operat@®S at
c

t=0. Differentiating both sides of Eq42) with respect ta
and using Eqs(40) and(42), we get

X;,(0=B3,(0/m,
_ _ (43)
P5(1)=—V; ()= X, (D) + n(t) = 2y8(t)X,

exp(il—J' ds[X(s)W(s)+Y(s)Z(s)]). (46)
From Eq.(45) it is clear that
<1>w,z=f DWJ DZP[W,Z]=1. (47)

By using Eq.(45) and settingX(s)=Y(s)=0 for s>t and
s<0, we obtain

FI[X,Y]= < exp( ;i—ftdiX(s)W(s)+Y(s)Z(s)]> >
0 W,z

(48)

Let us define the new function&l,, ,[X,Y] by
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Fuw.ZX,Y]= exp( ;L—Jotds[X(s)W(s) + Y(S)Z(s)]) .
(49

Using this functional, we introduce the new noisy density

matrix of the system

S ~S
Py 26X D= (Xlp5 (DX

+ oo + o0
:J dXiJ dxiUs wz(X,X", X, x{, 0)

X pS(xi,x{ ,0), (50)
where
U%C;W‘Z(x,x’,t;xi X ,0)
[ x’ A i S
_Lli+ Li, Dx,F,%;WYZ[x+ ,X_lex %(A [ X ]
+A DX A=A D) |, (51)
FrowzlXe X J=Fl AXYIFS [V (52

Then p?} (x,x’,t) is given by the average of the new noisy

density matrix (50) over all W(s), Z(s) with weight
P[W,Z]DWDZ:

<p?7¢;W,z(X-X,J))w,z:pzc(X,x’,t). (53)

Using the variableX(s), Y(s) defined by Eq(14), the new
noise-dependent effective actimc;W,Z[X,Y] in the propa-
gator(51) is written as

t . .
A;,c;w,z[X,Y]=fodsL;?c;W,z(X(s),Y(s),X(S),Y(S)),
(54)
where
L5 w,z(X(8),Y(8),X(8),Y(s))
=mY(s)X(s)— V[X(s)
+Y(8)/2]+V[X(s)—Y(s)/2]
—2f(0)Y(S)X(S)
+ X(S)W(s)+Y(S)Z(s)
+Y(8) 76(S).

The new action54) can be rewritten in the canonical form:

(59)

A5 w,zl Px, Py, X, Y]

t . -
=fods[PX(s)X(S)+ Py($)¥(s)

—H; w,z(Px(8),Py(8),X(s),Y(s))], (56)
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where

H7 w,z(Px(8),Py(s),X(s),Y(s))

%PX(S)P\((S) +V[X(s)+Y(s)/2]—V[X(s)

—=Y(s)/2]+2f(0)Y(s)X(s)—X(S)W(S)

—Y(S)Z(s)— Y(S) 7(S). (57)

Here the generalized momerfg(s), Py(s) are defined by

J
Px(s)=——

aX(s) L :w,z(X(8),Y(s),X(s),Y(s)),

(58)

Jd
—L

Py(s)= (s

7o z(X(8),Y(8),X(5),Y(s)).

Since the actioig56) is the single time integral, we obtain the
Schralinger-like differential equation for the new noisy den-
sity matrix (50),

9 .
ih =03 wA XY D=F5 wzpl (XY, (659

with F'%C;w,z being the operator arising from E¢7) by
substituting—i%zd/dX and —ifd/dY into Px(t) and Py(t),
respectively. There exists no operator ordering problem as in
Eq. (39. Averaging both sides of Eq(59 over all
W(s), Z(s) with the weightP[W,Z]DWDZ and using Eq.
(53), we obtain

J
ifi—p§

-0’ S
P (XY.D=R p> (X,Y,0)

—(XW(Dp] w7 (XY.D)wz

—(YZ(0)p (XY, D)z, (60
with I:|§7 being the operator arising from

H; (Px(3),Py(8).X(9).Y(s))

%PX(S) Py(s)+V[X(s)+Y(s)/2]—V[X(s)

—Y(s)/2]+2f(0)Y(S)X(S) = Y(S) 7c(S), (61)

by substituting —i%d/dX and —ifd/dY into Py(t) and
Py(t), respectively. Here it should be noted that the weight
P[W,Z]DWDZ is independent of. The last two terms on
the right-hand side of Eq60) can be rewritten as follows:
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(XW(t)pic ;W’Z(XIY!I)>W,Z

+ oo + o0 X Y
=xf dxif inf Dxf DY
- - X Yi

2h 0O
X\ T o F X YD)

| FE*]C[Y]

W,Z
><eXp<fi—iAS“?[X,Y])pS(xi .Yi,0)

=Xf de dYJDXJDY

2h

<2 (L XY D) FR Y]
i OX(t) WA W

xex%ii?ASw[X,Y])Ps(Xi Yi,0), (62

<YZ(t)p7§7C;W’Z(X-Y-t)>W,Z

+o +oo X Y
:Yf dXif inf DXJ DY
- - X Yi

2h &6
X\ T v (FwaX YD)

X F:C[Y]exr{%—ASJrC[X,Y]) pS(X:,Y;,0)

=Yf de de DXJ DYi—h#S(t)

X (<FW,Z[X1Y]>W,Z) F ;C[Y]

xexp(%AS*C[X,Y])pS(Xi .Y ,0), (63
where  X;=X(0)=(x;+x{)/2, Y;=Y(0)=x;—%{, and
ASTO[X, Y] A x, ]+A[x, - AS[x] Ac[x] From
Egs.(48), (49), and(12), it can be easily shown that

h S | 3

- m(“:w,z[X,Y])w,z) =0 (64)
and

2%

t
- m((':{/v,z[xvY])Wz) == ZjodSa'(t— S)X(s)

X(Fwd X, YDwz. (65

Substituting Eqs(62)—(65) into Eq.(60), we find the follow-
ing evolution equation for the noisy density matfi% (1):
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m—p (O)=[A%p] D]+ [x [2f(0)X— n(1),p, (1)]:+]

+ ftdSal(t—Sx[)A(,UJr(tas)
0

x[%,0.(s,0)p%0)U_(05)].0_(s,) w7
(66)

where
. . ifs . -
U,(s,s")=Tex —%f du{HS+f(0)x?
SI

—i[W<u)/2+Z<u>+37c(u>]}} (67)

and
- i (s - -
U(s’,s)=T‘1exr{%J du{HS+f(0)x?
S/

—x[—W(u)/2+Z(u)+ p(w]1}|, (68)

where T and T~ ! are the time ordering and antiordering
operators. Equatiof66) can also be derived from the rela-
tion

P2 2 (0=0.(60)p%0)0_(0p), 69

by differentiating both sides of E§69) with respect td and
averaging them over alW(s), Z(s) with the weight
P[W,Z]DWDZ

Now we define the noisy Heisenberg system operator
f)?lc(t) for the Schrdinger system operatd®S, as in Sec.

IV, by
Trd 0%3 (0]=Trd O (1)p%(0)], (70

Where()?} (0)=0S. By using Egs.(53) and (69), the left-
hand side of Eq(70) can be rewritten as

Trd 0% (0]=Trd(0-(0H)0%0..(1,0))w,z0%0)].
(71

Here it should be noted that we can interchange the order of
the trace over system degrees of freedom and the average
with respect toW(s), Z(s). Substituting Eq(71) into Eq.

(70), we obtain

Oic(t)z(U,(O,t)OSOAtyO»W,Z- (72)

Differentiating both sides of Eq.70) and using Eqs(66),
(70), and(72), we get

;. (t)=Pj,(D/m, 73
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;. ()= -V (D)= 2(0)%;, (1)
+ %[;7(t),<0,(0,t)0+(t,0)>w,z]+

- f;dsa'(t—sxo—(o’s)

x[x,0_(s,)0.(1,9]. 0. (s,0)wz. (74
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i 0 X X
:—J dxxf DX+J Dx_(W(t)
h — Xj Xi’

X F{N,Z[X+ aX—]>W,ZF§]C[X+ ,X_]eX[{;i—(AS[XJF]

+AX ] - ATX-]-AX-]) |, (79

where FWZ[X+,X ] and F} [x+,x ] are FWZ[X Y] and

Of course, these equations can also be obtained directly quR [Y] in Eq. (52). By using Eqs(48), (49), and(12), it can

differentiating both sides of Eq.72) with respect tot and
proceeding as we derived E(66) from Eg. (60). The last
two terms on the right-hand side of E.4) can be simpli-
fied as follows:

1. N N A
S [7(0,(U- (0D U (t,0)w,z]+ = 7(b), (79

| dsalt=5)0 09%.0 (500, 191,0. (5 0wz
0

! | Ta
—ZJ'OdSa (t—s)x,,c(s). (76)

To prove this, we first calculate the derivative with respect to

t of (U_(0t)U, (t,0))w 2. From Egs.(67) and (69 it can
be easily shown that

d . “ d . A
a<U<o,t>u+<t,0>>W,z:<a[u(o,t>u+<t,0>]>wz

= < 0_(0,t)fii—;(W(t)U+(t.0)>
W,z

(77)
To further evaluate this we consider the matrix element
AR (R .
(X{] U_(O,t)%xW(t)U+(t,O) [Xi). (79)
W,Z

This can be calculated as follows:

<><|< (0) xW(t)U (t,0)> |X;)

W,z

W,z

=<<xi'|0_<o,t>%ivv<t>0+<t,0>|xi>>

© X X i
= J dxf Dx+f Dx_ -xW(t)
Cw X; x! h

XE 5wzl X+ ,X_]exr{fib—(As[er] +AIX, ]-Ax_]

»

—A%x_-])

be shown that

<W(t)F{/v,z[X+ X- w,z=(W(t) F{N,Z[X!YDW,Z: 0.

(80)
Substituting this into Eq(79) we see that
(x/ |< Ot)—xW(t)U (t, 0)> Ix)=0 (82
W,z
or
<U (0t) xW(t)U (t, 0)> =0. (82
W,z
Then, substituting Eq:82) into Eq. (77), we obtain
d . N
31(0-(000,(t,0)wz=0. (83

Hence we have

(0_(0)0,(t,0))wz=(U_(0,000,(0,0))w,z=(1)wz=1.

(84)
Similarly, we can show that
d . . a N N
a<u_(O,S)[X,U_(S,t)U+(t,S)]+U+(S,0)>W’Z:0.
(85)
Then we have
(0_(09)[x,0_(s,)0(1,5)].0.(s,0))w
=(0_(09)[x,U_(s,5)0.(s,9)]:0.(5,0))wz
:<U—(O!S)[X11]+U+(SIO)>W,Z
=2(0_(0,5)xU. (5,0))w,z=2X;,(9). (86)

Then, from Egs(84) and (86), we arrive at Eqs(75) and
(76). Thus, substituting Eq$75) and(76) into the right-hand
side of Eq.(74) and integrating the last term by parts with
respect tas, we get
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form. However, one does not need to do it. As we have
shown, one can get through the work without the explicit
(87  form of P[W,Z]. In this paper we do not pursue it.
: ¢ ) To obtain the same forms as tligeneralizeyl quantum
f);%(t): _\“/27 (t)_zf dsf(t_s)i;k(s)ju 7(t)—2f(1)X, Langevin equations derived from theA HeisenberAg equations
¢ 0 of motion, we have recognized tha;t;c(t)zv’(xgyc(t)).
where we have used E(L6). Of course, in the Ohmic case However, this relation is nontrivial except for the potential
(32), wheref(s) = yd(s), these equations reduce to E43).  with the form V(x)=ax?+bx+c with constantsa,b,c. In
If, again, we recognize théf’;,c(t):V'(%%C(t)) in Eq. (87), Ref. [9], Kleinert and ShabaAmSov %engrilly define, for any
we obtain the same forms as the generalized quantum LangB[(?duCt 9f system operator® :szlo(, ), a produc't of
vin equations derived from the Heisenberg equations of mohQisy Heisenberg system operators byith our notation

X3, (0)=P3,(1/m,

tion [12—16. Then we can again write O;C(t)=HE:1©(;7kc)(t). We think that the proof of these rela-
tions should be given in the future.
Finally we should add the following comments. Equations
(88  (43) include the added termy(t)x [2f(t)X in Eq. (87)],
it/ while not in the original work of Kleinert and Shaban(®j.
: This is because their starting point is the influence functional
omitting the term corresponding to the second term of the
VI. DISCUSSIONS exponent in Eq(33). In addition, they consider a continuum
version of the Hamiltoniarl). Then the quantum noise op-

We have shown how to derive the generalized quantunérator is also given by a continuum version of E‘q?)
Langevin equations from the Feynman-Vernon forward-

backward path integral, by extending the Kleinert-Shabanov
method for the Ohmic environment to the general case. The
derivation is based on the supposition of the path integral
Fourier transforn{45). The functionalP[W,Z] in Eq. (45) is The author would like to thank Professor T. Kakitani for
formally given by inverting the path integral Fourier trans- support and helpful advice.

)A(;k(t) — giHthg iRt

Ia;]c(t):eiﬁt/hf)e—
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